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Abstract The axisymmetric steady-state convective-diffusive thermal field problem associated
with direct-chill, semi-continuously cast billets has been solved using the dual reciprocity boundary
element method. The solution is based on a formulation which incorporates the one-phase physical
model, Laplace equation fundamental solution weighting, and scaled augmented thin plate splines
for transforming the domain integrals into a finite series of boundary integrals. Realistic non-
linear boundary conditions and temperature variation of all material properties are included. The
solution is verified by comparison with the results of the classical finite volume method. Results for
a 0.500 [m] diameter Al 4.5 per cent Cu alloy billet at typical casting conditions are given.

Nomenclature
c = specific heat of the contiuum
cpP = specific heat at constant pressure of

phase P
cpw = specific heat of water
c$ = material property underrelaxation

factor
c� = fundamental solution geometry

coefficient
E = complete elliptic integral of the second

kind
fP = temperature dependent volume

fraction
Fÿ = known heat flux on the boundary
FP = heat flux of phase P
F = arbitrary scalar valued function
FFF = vector with scalars F i

GGG = arbitrary vector valued function
G = fundamental solution matrix
hM = specific latent heat of the solid-liquid

phase change
hP = specific enthalpy of phase P
hLS = enthalpy difference

herr = prescribed iteration error
hsteady = prescribed error for steady-state

determination
H = fundamental flux matrix
Hÿ = heat transfer coefficient (on the

boundary)
Hÿhigh = constant in mould heat transfer

coefficient correlation
Hÿlow = constant in mould heat transfer

coefficient correlation
I 1 = weighting integral of the transience

and source terms
I 2 = weighting integral of the convection

term
I 3 = weighting integral of the diffusion

term
k = thermal conductivity of the continuum
kP = thermal conductivity of phase P
k0 = representative thermal conductivity
K = complete elliptic integral of the first

kind
nÿ�p� = outward pointing normal on ÿ
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1. Introduction
The BEM (Brebbia et al., 1984) is a weighted residual method for solving partial
differential equations, characterized by choosing an appropriate fundamental
solution as a weighting function and by using the generalized Green's formula
for complete transfer of one or more partial differential operators on the
weighting function. The main comparative advantage of the boundary element
method over other discrete approximative methods is demonstrated in cases
where this procedure results solely in a boundary integral equation. This turns
out to be possible only for some partial differential equations. In general the
procedure results in a boundary-domain integral equation. The former and the
latter cases are demonstrated by two examples. The first one deals with the
boundary element method for the Laplace equation, structured with the
fundamental solution of the Laplace equation (steady diffusion) ± the procedure
results in boundary-only formulation. The second one deals with the boundary
element method for the general transport equation (transient convection-

N = number of mesh points
Nÿ = number of mesh points on the

boundary and number of boundary
elements

N
 = number of mesh points in the domain
N	 = number of global interpolation

functions
p = field point position vector
Q = billet coolant flow
r = Euclidean distance between field and

collocation point
r = radial coordinate
rs = radial coordinate of the source point
rn = radial coordinate of the shape function

	n

r0 = reference radial coordinate
rmax = billet radius
s = source point position vector
t = time
t0 = initial time
T = temperature
TS = solidus temperature
TL = liquidus temperature
TM = mean phase change temperature
TLS = phase change interval
Th = enthalpy reference temperature
T�p; t0� = initial temperature
Tÿ = known temperature on the boundary
T��p; s� = fundamental solution of the Laplace

equation
TT = Kirchhoff variable reference

temperature
Tÿ = billet boundary temperature
Tÿref = bulk cooling water temperature
�T = mean temperature �T � 1

2 �Tÿ � Tÿref�
T �T� = Kirchhoff variable
vP = velocity of the phase P
z = axial coordinate
zs = axial coordinate of the source point

zn = axial coordinate of the shape function
	n

z0 = reference axial coordinate
Greek symbols
ÿ = boundary
ÿD = boundary with Dirichlet type

boundary conditions
ÿN = boundary with Neumann type

boundary conditions
ÿR = boundary with Robin type boundary

conditions
�t = positive time increment
�z = positive increment of the axial

coordinate
� = coefficient of implicitness
$ = arbitrary temperature-dependent

quantity
� = first modified distance between field

and source point
�n = first modified distance between field

and collocation point
~� = second modified distance between

field and source point
~�n = second modified distance between

field and collocation point
%P = temperature dependent density
%0 = representative density
%w = density of water
&u = shape function coefficient
&&&& = vector with shape function coefficient

&u
� = abbreviation in convection term
 u�p� = global interpolation function
 ̂u�p� = harmonic global interpolation function
	 = shape function geometry matrix

 = connected fixed domain
Superscripts
j = timestep counter
m = iteration counter
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diffusion) structured by weighting with the fundamental solution of the
Laplace equation ± the domain integrals appear at least from the transience,
convection, and source terms.

The numerical solution of the boundary integral equations is very effective
since the discretization of the fields and geometry is concentrated on the
boundary alone. The numerical solution of boundary-domain integral
equations is less effective since in addition to the boundary discretization into
boundary elements, the domain has to be discretized into domain cells. The
numerical solution of the resulting boundary or boundary-domain integrals
turns out to be very accurate also for the most basic piece-wise constant order
of discretization. However, the domain cell discretization makes the method
very similar to the classical Finite Element (FEM) or Finite Volume Methods
(FVM) and with this the principal attraction of the BEM seems to be lost.

One of the possibilities for treating the resultant domain integrals with a
finite series of boundary integrals instead of the domain cells is the Dual
Reciprocity Boundary Element Method (DRBEM) (Partridge et al., 1992). The
key point of the DRBEM is approximation of the field in the domain by a set of
global approximation functions and subsequent representation of the domain
integrals of these global approximation functions by the boundary integrals. In
DRBEM all calculations reduce to evaluation of the boundary integrals only.
Despite the proved practical applicability of the DRBEM (Aliabadi et al., 1995),
important theoretical questions remain. For example, which global
interpolation functions are most suitable for representation of the fields in the
domain, and where should the collocation points of these global interpolation
functions be put? Up to present, both questions have been addressed mostly
from the heuristic point of view. The most popular global interpolation function
used in the majority of the DRBEM calculations so far in the field of transport
phenomena is 1� r, with r representing the Euclidean distance between field
and collocation point. The convergence of these functions was studied both
numerically and in a more formal way in Yamada et al. (1994). Up to now, only
ad-hoc distributed collocation points have been used, since an appropriate error
estimator does not exist.

Some mathematically substantiated answers to the first question have been
recently rediscovered by Golberg and Chen in works concerning the theory of
radial basis functions (Golberg and Chen, 1994). It has been demonstrated
(Duchon, 1997) that the use of thin plate spline radial basis functions gives an
approximation in which the curvature is minimized. The first theoretical
investigations of the convergence of these functions were carried out in
(Buhmann, 1990). An error and convergence analysis for the DRBEM for the
Poisson equation have been recently reported by Golberg et al. (1998).

The global interpolation of the fields over a domain introduces unknowns in
the domain in addition to the unknowns at the boundary. The number of these
additional unknowns usually exceeds the number of boundary unknowns. The
systems of algebraic equations resulting from DRBEM are thus large, fully
populated and asymmetric. A third important but not sufficiently investigated
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element of the DRBEM method is the possible iterative solution of associated
systems of algebraic equations. This issue is of utmost importance when
solving large-scale problems. Bulgakov et al. (1998) recently propose two
iterative solution techniques for DRBEM matrices originating from the
diffusion equation.

The DRBEM for solving the energy transport equation was first applied to
simple diffusion-governed linear (Wrobel et al., 1986) and nonlinear problems
(Wrobel and Brebbia, 1987), then to steady-state convective-diffusive problems
(Partridge et al., 1992), and finally successfully demonstrated in a fixed grid
(one-domain) completely non-linear transient convective-diffusive context
including phase-change effects and nonlinearities arising simultaneously from
material properties and boundary conditions (SÏarler and Kuhn, 1998a; SÏarler
and Kuhn, 1998b). This development upgrades the DRBEM method for solving
problems previously exclusively coped with by using more established
numerical approaches. A comprehensive review of attempts to use boundary
element methods in micro- and macroscopic melting and solidification
problems can be found in SÏarler et al. (1993).

Direct-Chill (DC) casting is currently the most common semi-continuous
casting practice in non-ferrous metallurgy (Emley, 1976). The process involves
molten metal being fed through a bottomless water-cooled mould where it is
sufficiently solidified around the outer surface that it takes the shape of the
mould and acquires sufficient mechanical strength to contain the molten core at
the centre. As the ingot emerges from the mould, water impinges directly from
the mould onto the ingot surface (direct-chill), falls over the cast surface and
completes the solidification. A schematic of the process is given in Figure 1.

nozzle

liquid

mushy

solid

mould

impinging water

running water

starter block

withdrawal ram

ingot

distributor

Figure 1.
Schematics of the DC
casting process
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Related transport, solid-mechanics, and phase-change kinetics phenomena
(Katgerman et al., 1990) have been extensively studied and many different
numerical methods have been used to solve the respective DC casting models.

The proper prediction of the temperature, velocity, concentration and phase
fields in the ingot is one of the prerequisites for optimization of the process with
respect to its quality and productivity. State-of-the-art models of the process
(Reddy and Beckermann, 1997) are partially based on the one-phase (Voller et
al., 1989) and partially on the two-phase formulation (Ni and Beckermann,
1991) of the binary eutectic solid-liquid phase change system, and the
computational model at least qualitatively corresponds to the measurements.

Up to now, the BEM has been used only for dealing with physically much
simpler DC casting situations. Very recently, Bialecki et al. (1996) proposed a
two-dimensional front tracking (two-domain) boundary integral formulation
solution of the continuous casting problem structured through the steady
convective-diffusive fundamental solution weighting. The resultant extremely
efficient boundary only method is particularly suitable in rough inverse
modelling estimates (Nowak et al., 1996). However, its main restrictions are the
constant thermal properties of the phases, the uniform velocity field, and the
lack of being able to cope with materials solidifying over a temperature range.

This paper demonstrates the use of the newly proposed dual reciprocity
boundary element technique (SÏarler, 1996) for solving a wide range of
continuous casting problems without the aforementioned limitations. It is
based on the fixed-grid (one-domain) formulation structured with the
fundamental solution of the Laplace equation and scaled thin plate spline
global interpolation functions. The present work upgrades the previous use of
the dual reciprocity method in an axisymmetric heat transfer context (Wrobel
and Telles, 1996) in many ways. The inclusion of the convection term,
treatment of the phase-change, provision for temperature dependent material
properties and use of the axisymmetric form of the scaled thin plate splines
which replace the previously used heuristic global interpolation functions are
particularly important.

2. Governing equations
The energy transfer in DC casting can be reasonably represented in the
framework of the one-phase continuum formulation (Bennon and Incropera,
1987) with the classical solid-liquid constitutive relations. Consider a connected
fixed domain 
 with boundary ÿ occupied by a phase change material described
with the temperature dependent density %P , specific heat at constant pressure
cpP and the thermal conductivity kP of the solid P � S and the liquid P � L
phase, and the specific latent heat of the solid-liquid phase change hM. The one-
phase continuum formulation of the energy transport for the assumed system is

@

@t
� fS %S hS � fL %L hL � � r � � fS %S hS vS � fL %L hL vL �

� ÿr � � fS FS � fLFL �:
�1�
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Function fP denotes the temperature dependent volume fraction, hP the specific
enthalpy, vP the known velocity, and FP the heat flux of phase P. Since only
two phases are present in the system, fS � fL � 1: Due to assumed local
thermal equilibrium between the phases, the phase temperatures are equal and
represented by T . The phase change takes place between solidus TS and
liquidus temperature TL. Mean phase change temperature TM and phase
change interval TLS are TM � 1

2 TS � 1
2 TL; TLS � TL ÿ TS . Pure

substances are modelled by a narrow phase change interval with TM in this
case standing for melting temperature. Constitutive relations for the heat fluxes
are based on the Fourier relation FP � ÿ kP rT , and the two enthalpy-
temperature relationships with neglected pressure influence are

hS �
Z T

Th

cpS��� d�; hL � hS�TS� �
Z T

TS
cpL��� d�� hM; �2�

with Th representing the enthalpy reference temperature. The governing
equation could be rewritten in the following latent heat source term form

%0 c
@T

@t
�r �� � r � � krT � ÿ %0 hLS

dfL
dt

�3�

Specific heat c and thermal conductivity k of the continuum are defined as

%0 c � fS hS
d%S
dT
� fL hL

d%L
dT
� fS %S cpS � fL %L cpL �4�

k � fS kS � fL kL �5�

with the representative density %0 of the system

%0 � 1

2
%S�TM� � 1

2
%L�TM� �6�

and the enthalpy difference hLS

%0 hLS � %L hL ÿ %S hS �7�

The abbreviation in the convection term is

� � fS %S hS vS � fL %L hL vL �8�

We seek the solution of the governing equation for the thermal field at final
time t � t0 ��t, where t0 represents initial time and �t the positive increment
of the coordinate z. The solution is constructed by the initial and boundary
conditions that follow. The initial temperature T�p; t0� at point with position
vector p and time t0 is defined through the known function T0;
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T�p; t0� � T0; p 2 
 [ ÿ �9�

The boundary ÿ is divided into not necessarily connected parts ÿD, ÿN , and ÿR;

ÿ � ÿD [ ÿN [ ÿR; �10�

with Dirichlet, Neumann, and Robin type boundary conditions respectively.
These boundary conditions are at point p and time t0 � t � t0 ��t defined
through known functions Tÿ, Fÿ, andHÿ:

T�p; t� � Tÿ; p 2 ÿD �11�

@T

@nÿ
�p; t� � ÿFÿ

k
; p 2 ÿN �12�

@T

@nÿ
�p; t� � ÿHÿ

k
�T ÿ Tÿ ref �; p 2 ÿR �13�

where the heat transfer coefficient Hÿ and other known functions are allowed
to depend arbitrarily on the thermal field. The outward pointing normal on ÿ is
denoted by nÿ�p�. The considered physical model for energy transfer is
already fully compatible with the momentum transfer and could be easily
upgraded with the influence of the species transfer.

Equation (3) is rewritten by introducing the Kirchhoff variable

T �T� � TT �
Z T

TT

k���
k0

d�; �14�

defined with representative thermal conductivity k0 � 1
2 kS�TM� � 1

2 kL�TM�,
and with the Kirchhoff variable reference temperature TT . Knowledge of the
inverse Kirchhoff function T � T�T � is assumed as well. The governing
equation is accordingly reformulated as

%0 k0
c

k

@

@t
T � r �� � k0r2T ÿ %0 hLS

@

@t
fL; �15�

the initial conditions as

T �p; t0� � T �T0�; p 2 
 �16�
and the boundary conditions as

T �p; t� � T �Tÿ�; p 2 ÿD �17�

@T
@nÿ
�p; t� � ÿFÿ

k0
; p 2 ÿN �18�
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@T
@nÿ
�p; t� � ÿHÿ

k0
�T�T � ÿ Tÿ ref �; p 2 ÿR: �19�

The transformed equation (15) with transformed initial and boundary
conditions is solved for @T

@nÿ
�p; t0 ��t�; p 2 ÿD, T �p; t0 ��t�; p 2 
 [ ÿN[

ÿR, giving the required thermal field through the inverse Kirchhoff function.
The reformulation of the expressions associated with equation (3) into

expressions associated with equation (15) is required in order to linearize the
diffusion term. This enables its representation as a boundary integral after
weighting with the fundamental solution of the Laplace equation.

3. Numerical method
The numerical method is presented in three logical entities: time discretization,
iteration over timestep, and space discretization, as follows.

3.1 Time discretization
Time discretization of equation (15) is performed with the simple two-level
finite differencing

%0 k0 �c
k
�j�� 1

�t
� T j�1 ÿ T j � � �r ��j�1 � �1ÿ ��r ��j

� k0 ��r2T j�1 � �1ÿ ��r2T j� ÿ %0 hj��
LS

1

�t
�f j�1
L ÿ f j

L� �20�

where indexes j and j+1 represent values at t0 and t0 ��t. Coefficient � � 1
gives fully implicit, and � � 1=2 Crank-Nicolson scheme.

3.2 Iteration over timestep
Since material properties, liquid volume fraction, convection term and
boundary conditions in general depend on temperature, iterations over the
timestep are inherently required in order to find the solution. The arbitrary
temperature-dependent quantity$ at iteration level m+1 and time level j� � is
calculated as

1$j�� � $j;

m�1$j�� � �m�1$
j�1 � �1ÿ ��$j; m � 1 �21�

with

m�1$
j�1 � $�T�mT j�1�� � c$ �$�T�m�1T j�1�� ÿ$�T�mT j�1� � �22�

and c$ representing the material property under-relaxation factor. The
calculation $�T�T �� is required because the material properties as well as
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possible correlations hidden inH are standardly given in terms of temperature
instead of the Kirchhoff variable.

The liquid volume fraction at iteration level m+1 is approximated with the
Kirchhoff variable at iteration level m+1 (Voller-Swaminathan (1991) ansatz)

1f j�1
L � f j

L

m�1f
j�1

L � mf j�1
L � m

�k0

k

dfL
dT

�j�1 ÿ
m�1T j�1 ÿ T �mf j�1

L �
�
; m � 1 �23�

The convection term at iteration level m+1 is expanded similarly as

1�
j�1 � �j

m�1�j�1 � m�j�1 � m
�k0

k

@�

@fL
dfL
dT

�j�1

�m�1T j�1 ÿ T �mf j�1
L ���

m
�k0

k

�@�

@%S
d%S
dT
� @�

@%L
d%L
dT
� @�

@hS
dhS
dT
� @�

@hL
dhL
dT

��j�1

�m�1T j�1 ÿm T j�1�; m � 1

�24�

with the explicit form of derivatives

@�

@fL
dfL
dT
� � %L hL vL ÿ %S hS vS � dfL

dT
;

@�

@%P
d%P
dT
� fP hP vP

d%P
dT

;

@�

@hP
dhP
dT
� fP %P vP cpP �25�

Function T �fL� is defined as

T �fL� �
T �TS�; fL � 0
T �T�fL��; 0 < fL < 1
T �TL�; fL � 1

8<: �26�

The adjacent iterative treatment of boundary conditions is

m�1T j�� � � T �mTj�1
ÿ � � �1ÿ �� T �Tj

ÿ�; p 2 ÿD; �27�
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m�1 @T
@nÿ

j��
� ÿ�

mFÿ
j�1

k0
ÿ �1ÿ �� Fÿ

j

k0
; p 2 ÿN ; �28�

m�1 @T
@nÿ

j��
� ÿ�

h mHÿ

mk
m�1T ÿ

mHÿ

k0
�mTÿ ref ÿ mT � k0

mk
mT �

ij�1

ÿ�1ÿ ��
hHÿ

k0
�T ÿ Tÿ ref�

ij

; p 2 ÿR: �29�

The Robin boundary conditions (29) have been split into a form which permits
calculation of the unknown m�1T j�1.

The final time-discretized form of equation (15) is obtained by inserting the
m� 1 iteration level material properties, liquid volume fraction, and
convection term expansions into equation (20).

3.3 Iterative updating
After discretization over space and calculation of the Kirchhoff variable field
(and subsequently the temperature field) at time j� 1 and iteration m� 1,
elaborated in the next chapter, the quantities involved have to be updated for
the next iteration. The temperature dependent quantities are updated from (21),
the convection term is updated from equation (24) and the boundary conditions
are updated from equations (27-29). Two different situations can occur
regarding the liquid volume fraction updating, the first one with the liquid
volume fraction at time j� 1 and iteration level m in the phase change interval

0 < mf j�1
L < 1, and the second one outside the phase-change interval mf j�1

L � 0

or mf j�1
L � 1. In the first case, the liquid volume fraction is updated directly

from equation (23). In the second case, the derivative dfL=dT equals zero and
the melting or solidification process (transition from outside the phase-change
interval into the phase-change interval) can not be started when using the
above-mentioned formula. A suitable updating strategy for such cases is

m�1f
j�1

L � mf j�1
L �m � c

hLS
k0

k
�j�� ÿ m�1T j�1 ÿ T �mf j�1

L �
� �30�

A derivation of formula (30) which is similar to the first one with dfL=dT
replaced by c=hLS can be found in SÏarler and Kuhn (1998a). Since both
updating formulas (23,30) could give physically impossible liquid volume
fractions (less than 0 or greater than 1), updating is corrected by the over/
under-shoot formula

m�1f j�1
L �

1; m�1 f j�1
L > 1

m�1f
j�1

L ; 0 < m�1f
j�1

L < 1

0; m�1f
j�1

L < 0

8>><>>: �31�
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The internal timestep iterations are stopped when the maximum absolute value
of the one-phase enthalpy h � ��S=�0� fS hS � ��L=�0� fL hL difference
between two successive iterations does not exceed some predetermined small
positive herr

max jm�1hj�1 ÿm hj�1j < herr �32�
The discussed updating is in principle based on the Voller-Swaminathan idea
(Voller and Swaminathan, 1991), however it has been extended in the present
context to the convection term and put into Kirchhoff variable perspective. The
principal difference originates in the second updating formula (30) which is in
our work independent of space discretization. Therefore, from this point of the
derivation onward one can continue with any space discretization procedure.

3.4 Space discretization
The DRBEM space discretization is applied in the present work. Respectively,
space discretization is made by weighting the time-discretized equation (15)
over domain 
 with the fundamental solution of the Laplace equation T��p; s�.
p stands for the field point and s for the source point position vector. The
integral type (F denotes the arbitrary scalar and GGG the arbitrary vector valued
function respectively)

I 1 �
Z




F�p�T��p; s� d
 �33�

arises when weighting the transience and source terms,

I 2 �
Z




r � GGG�p�T��p; s� d
 �34�

when weighting the convection term, and

I 3 �
Z




r2F�p�T��p; s� d
 �35�

when weighting the diffusion term. Let us focus on axisymmetric (coordinates
r; z of the field point and coordinates rs; zs of the source point) geometry and
field situations, e.g.

T��p; s� � 1

� �
K�~��; �36�

with �2 � �r � rs�2 � �zÿ zs�2, ~� � 2 r rs=�, and K standing for a complete
elliptic integral of the first kind. Boundary geometry is approximated by Nÿ

straight line segments, and spatial variation of the fields on each of the
boundary segments is represented by constant interpolation functions with
meshpoints coinciding with the geometrical centres of the straight line
segments. Spatial variation of the fields in 
 is represented by the N global
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interpolation functions (Partidge et al., 1992) of the form (Einstein summation
convention is used in this text, i.e. any index that is repeated twice in a product
is summed on, underlined index is not summed on)

F�p� �  u�p� &u; �37�

collocating N � Nÿ � N
 meshpoints pn with coordinates rn; zn. (the first Nÿ

collocation points coincide with the boundary meshpoints and the remaining
N
 are arbitrarily distributed in the domain). Coefficients &u are calculated by
constructing (Powell, 1993) a system of N algebraic equations

	 &&& � FFF �38�

The vectors are &&& � �&1; &2; � � � ; &N 
�t and FFF � �F 1;F 2; � � � ;FN ; 0; � � � ; 0�t.

The first N rows of matrix 	 are of the form � v1;  v2; � � � ;  v N 
�, and the

remaining rows are of the form � 1v;  2v; � � � ;  Nv; 0; � � � ; 0�, where the notation
has been shortened to F n � F�pn�,  nu �  u�pn�. Coefficients &u follow by
inverting the system of algebraic equations

&&& � 	ÿ1 FFF �39�

Selection of simply augmented thin plate splines (Golberg and Chen, 1994) for
 u gives an optimal approximating property. The axisymmetric form of these
functions has been found to be (the details of the relatively lengthy derivation
can be found in SÏarler (1998))

 n � 4 �n E�~�n�; n�1;2;���;N;

 N�1 � 1;

 N�2 � �zÿ z0� �40�

with �2
n � �r � rn�2 � �zÿ zn�2, ~�n � 2 r rn=�n, and E standing for a complete

elliptic integral of the second kind. If the symmetry axis does not cross 
,
additional augmentation with

 N�3 � log r ÿ log r0 �41�

is appropriate. Constants r0 and z0 represent mean coordinates of the domain 
.
The scaling constant z0 assures the translatory symmetry of the computations
in the direction of the symmetry axis.

The integral type I 3 is calculated by using Green's second identity

I 3l � Glk �ki
@F i

@nÿ
ÿ Hlk �ki F i ÿ c�l �li F i;
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Glk �
Z

ÿk

T�l r dr dz; Hlk �
Z

ÿk

@T�l
@nÿ

r dr dz; �42�

where k � 1; 2; � � �Nÿ and i; l � 1; 2; � � �N . Index l stands for sl � pl , ÿk

represents the k-th boundary segment in generating axisymmetric plane, and c�l
is equal to c�l � 1

2 ; sl 2 ÿ, c�l � 1; sl 2 
. The integral types I 1 and I 2 are
calculated by defining the harmonic functions r2 ̂u�p� �  u�p�.
Consequently, integral types I 1 and I 2 could be written in a compact dual
reciprocity form

I 1l � 	lu 	
ÿ1
ui F i;

I 2l �
h

	ln 	
ÿ1
ni

1

pr i
�	r ln 	

ÿ1
ni

i
Gi r �	z ln 	

ÿ1
ni Gi z; �43�

with

	lu � Glk �ki
@ ̂iu

@nÿ
ÿ Hlk �ki  ̂iu ÿ c�l �li  ̂iu;

	� lu � Glk �ki
@

@nÿ

@ ̂iu

@p�
ÿ Hlk �ki

@ ̂iu

@p�
ÿ c�l �li

@ ̂iu

@p�
�44�

Index � could take values r; z, and indexes o; u; and v run over o � 1; 2; � � � ;N ,
u; v � 1; 2; � � � ;N . The formulation of the convection term used in this paper
is much more efficient and accurate than the forms used previously (Wrobel
and DeFigueredo, 1991) in the context of the variable velocity fields, since they
originate from the conservation form of the convection term instead of other
derived forms. Axisymmetric functions  ̂n have been found to be

 ̂n � 1

18�
�3

n �2 �2ÿ ~�2
n�E�~�n� ÿ �1ÿ ~�2

n�K�~�n� �; n�1;2;���;N;

 ̂N�1 � 1

6
� r2 ÿ r0

2 � �zÿ z0�2 �;

 ̂N�2 � 1

6
� zÿ z0 �3;

 ̂N�3 � 1

6
r2 � log r ÿ log r0 �: �45�

After weighting the time discretized governing equation with the fundamental
solution of the Laplace equation and calculating the boundary and domain
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integrals as described, the completely discretized form is structured.
Rearrangement of its terms with respect to the boundary conditions gives a

system of N algebraic equations for solving the unknowns m�1T j�1
n or m @T

@nÿ

j�1

n

on the boundary, and m�1T j�1
n in the domain. The explicit forms of the

algebraic system of equations matrix elements are listed in (SÏarler, Kuhn,
1998a) and the extensive testing of the present method for simple transient and
steady-state situations can be found in SÏarler and Kuhn (1998b).

4. DC casting model
The numerical examples in this paper are divided into two parts. In the first
part, a comparison of the present method with the results of the classical finite
volume method is given, based on a simplified model of the DC casting process.
In the second part, the present method is used in a full-scale industrial process
model that gives technologically relevant results. Let us first discuss common
features used in both parts.

Only steady state solutions are shown in this paper. They have been
approached by transient calculation using fixed timestep 5 �s� and fully implicit
scheme. The criterion for reaching the steady-state is defined as

max jhj�1 ÿ hj j < hsteady �46�
The enthalpy iteration error herr and the steady-state enthalpy criterion hsteady

have been both set to 0:1 �J=�kg K��. The enthalpy Th and the Kirchhoff
reference temperature TT have been both set to 0:0 �K�.

The boundary element mesh for calculating the domain integrals of the
global interpolation functions (see equation (44)) is made by uniform
subdivision of the boundary elements into three sub-elements. The Kirchhoff
transform and enthalpy are calculated analytically and the inverse Kirchhoff
transform by the Van Wijngaarden-Dekker-Brent method (Press et al., 1992)
with an accuracy of 10ÿ6. The material properties under-relaxation factor was
set to c$ � 1.

System matrices are solved by the standard Gaussian elimination with rows
and columns pivoting. The computer program has been coded in Fortran with
double precision accuracy. Test cases have been run on a HP 9000 Series 700
Model 715/100 workstation. The regular integrals are calculated by the 8-point
Gaussian quadrature, the weakly singular integrals (diagonal elements in
matrix G) analytically, and the strongly singular integrals (diagonal elements
in matrix H) by the thermal equilibrium technique. System matrices are solved
by the standard Gaussian elimination with rows and columns pivoting.

4.1 Comparison with the FVM
The following simplified axisymmetric DC casting-like test case was
considered for test comparison with the FVM. The computational domain is a
solid cylinder 0:0 �m� � r � 0:25 �m�, 0 �m� � z � ÿ1:25 �m�. The boundary
conditions at the top of the cylinder at z � 0 �m� are of the Dirichlet type with
Tÿ � 980 �K�, and the boundary conditions at the bottom of the cylinder are of
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the Neumann type with Fÿ � 0 �W=m2�. The boundary conditions at the outer
surface of the cylinder are of the Robin type with Tÿ ref � 298 �K�. The heat
transfer coefficient between 0 �m� � z > ÿ0:01 �m�, ÿ0:01 �m� � z >
ÿ0:06 �m�, ÿ0:06 �m� � z > ÿ0:10 �m�, and ÿ0:10 �m� � z > ÿ1:25 �m� are
Hÿ � 0:0 �W=�m2 K��, Hÿ � 3000:0 �W=�m2 K��, Hÿ � 150:0 �W=�m2 K��,
andHÿ � 4000:0 �W=�m2 K�� respectively.

Material properties correspond to a simplified Al4.5 per cent Cu alloy and
have been combined from Reddy and Beckermann (1997) and Pehlke et al.
(1982): �S � �L � 2982 �kg=m3�, kS � 120:7 �W=m K�, kL � 57:3 �W=m K�,
cS � 1032:0 �W=m K�, cL � 1179:0 �W=m K�, hM � 3482000:0 �J=kg K�, TS �
775:0 �K�, TL � 911:0 �K�. The liquid fraction increases linearly between TS
and TL. The initial conditions grow linearly with the z coordinate from 298 �K�
at the bottom to 980 �K� at the top of the cylinder. The uniform casting velocity
is vS r � vL r � 0 �m=s�, vS z � vL z � ÿ0:00633 �m=s�.

Since the analytical solution to the posed problem is not known, classical
FVM is used to obtain the reference solution for comparison. The FVM
discretization technique is well-known and described in Patankar (1980). Axial
symmetry is considered in the present case. Due to the low PeÂclet number the
central difference scheme was used. Standard total enthalpy formulation of the
energy conservation equation was used as for example in Bennon and
Incropera (1988). The set of linear discretized equations resulting from the fully
implicit time marching scheme for solving the energy conservation equation
was solved with an ADI-like procedure using the Thomas algorithm for solving
tridiagonal systems. A detailed description of the implementation can be found
in Mencinger (1998).

The reference solution was obtained on a 25�125 uniform grid (see Figure 2)
with 3,125 finite volumes and 50�250 uniform grid with 12,500 finite volumes.
The CPU time required to run the cases was 1,264 and 8,121 seconds
respectively. The comparison of both solutions in terms of the centerline
temperature, middle radius temperature at r � 0:25 �m� and boundary
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temperature is shown in Figure 4. The absolute difference of both FVM
solutions at the mentioned three axial positions is shown in Figure 5. The
maximum absolute error calculated in 126 uniform axial locations is 5:6 �K�,
2:7 �K�, and 6:3 �K� at the centerline, middle and surface, respectively. The
scaling of the errors with the temperature difference of the process, i.e.
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290 �K� ÿ 298 �K� gives a maximum relative error between the two meshes of
less than 1 per cent and thus proves the reasonable mesh-independence of the
FVM results.

The comparison of the DRBEM solution obtained with the non-uniform
mesh from Figure 3 ( with N � 603, Nÿ � 81, N
 � 522) and the 50�250 FVM
mesh at three radial locations is shown in Figure 6 and the maximum absolute
error between the two solutions calculated at 126 uniform axial locations is
shown in Figure 7. Related errors are 6:6 �K�, 3:3 �K�, and 14:6 �K� at the
centerline, middle and surface, respectively. The scaling of the errors with the
temperature difference of the process gives a maximum relative error between
the two principally different discrete approximative solutions of less than 2.5
per cent. The maximum absolute errors between the two methods occur in the
area of high surface gradients and are very localized as seen in Figure 7.
Observation of the errors between both FVM results and results obtained by
the fine-grid FVM method and DRBEM method proves the reasonable mesh-
independence of the DRBEM results. This is somewhat surprising since the
DRBEM solution is calculated on approximately 5 per cent of the gridpoints of
the fine FVM mesh only and shows the high convergence rate of the DRBEM
results. All figures calculated with DRBEM are generated from the
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axisymmetric augmented thin plate spline global interpolation as used in the
calculations. The cylinder reaches steady-state in 246 timesteps with a
maximum of six and an average number of 3.4 internal timestep iterations.
Figure 8 presents the respective isotherms obtained with the DRBEM method.
The CPU time for the test case is 2,880 seconds. Most of the computing time is
spent on the solution of full asymmetric systems of algebraic equations.

4.2 DC casting model
The second example deals with the realistic model of the billet. The geometry
of the billet, the space discretization, the boundary conditions at the top and at
the bottom of the billet as well the initial conditions are assumed to be the same
as in the first test case.

The boundary conditions at the outer surface of the billet are of the Robin
type. They are divided into three regions. The first region 0:0 �m� � z >
ÿ0:095 �m� corresponds to the mould, the second region corresponds to the
cooling gap ÿ0:950 �m� � z > ÿ0:100 �m� (this is the gap between the lower
end of the mould and the point at which water flowing from the mould
impinges onto the surface of the billet), and the third region ÿ0:100 �m� �
z � ÿ1:250 �m� corresponds to the direct-chill region.
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The first centimeter at the top of the mould is assumed to be insulated. The heat
transfer coefficient in the remaining part of the mould region (Katgerman et al.,
1990) is represented by the empirical correlationHÿ�W=�m2 K� �

Hÿ � HfL
ÿ highH1ÿfL

ÿ low �47�
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with Hÿ high � 4000:0 and Hÿ low � 150:0. This correlation takes into account
the reduction of the heat transfer coefficient due to solidification shrinkage
(formation of the air gap between billet outer surface and mould inner surface).

The heat transfer coefficient in the cooling gap region is represented by the
constant heat transfer coefficientHÿ � 150:0 �W=�m K��.

The heat transfer coefficient in the direct chill water cooled region is
represented by the Weckman-Niessen (Weckman and Niessen, 1982) heat
transfer correlationHÿ �W=�m K��
Hÿ � �ÿ1:67 105 � 704:00 �Tÿ � � Q

2� rmax
�1=3 � 20:80

Tÿ ÿ Tÿ ref
�Tÿ ÿ 373:15 �3

�48�
where Tÿ �K� represents billet boundary temperature, Tÿ ref �K� the bulk
cooling water temperature, and �T the mean temperature

�T � 1

2
�Tÿ � Tÿ ref � �49�

Q�m3=s� denotes the billet coolant flow and rmax �m� the billet radius. The first
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term in correlation (48) accounts for convective heat transfer due to the one-

phase free falling turbulent film of water, and the second term, which is taken

into account only when Tÿ > 373:15 �K�, models the subcooled nucleate boiling.

The bulk water heating with the decreasing axial location is calculated as
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Tÿ ref�zÿ�z� � Tÿ ref�z� �
F�zÿ 1

2 �z� 2� rmax �z

%w��T�zÿ 1
2 �z�� cpw��T�zÿ 1

2 �z��Q �50�

where �z represents a positive number, and %w and cpw stand for the density
and the specific heat of water, respectively. Equation (50) is repeatedly applied
with �z corresponding to the lengths of the boundary elements on the cooling
surface. The temperature dependent material properties for water at 1 [Bar] are
taken from Incropera and De Witt (1990, Table A.6 at page A22). The water
temperature at the top of the outer billet surface is assumed to be at 298 �K�
with the volumetric flow rate Q � 6:944� 10ÿ3 �m3=s�.

The material properties for the Al 4.5 per cent Cu alloy are taken from Pehlke
et al. (1982) and in contrast to the first case feature the temperature dependence
and more realistic liquid fraction ± temperature relationship.

The densities of the solid and the liquid phase are assumed to be equivalent
with the first test case. The solidus and liquidus temperatures are
TS � 821:2 �K�, TL � 911:0 �K�. The liquid fraction increases between TS and
TL according to the Sheil law
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temperature along the
billet surface
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fL�T� �

0:000 T � TS

�T ÿ ��TM ÿ T�S �=�TM ÿ TL��
1

kpÿ1 �=�T�S ÿ TS� TS < T < T�S

��TM ÿ T�=�TM ÿ TL��
1

kpÿ1 T�S < T < TL
1:000 T � TL;

8>>>>><>>>>>:
�51�

with T�S � TS � 4 �K�, the melting point of the solvent TM � 933:2 �K�, and

the equilibrium partition ratio kp � 0:17 (see Figure 9). Melting enthalpy is

HM � 388837:0 �J=kg�. The thermal conductivity and the specific heat are

assumed to be temperature dependent kS � kL � fk�T� �W=�m K��, cpS � cpL
� fcp
�T� �J=�kg K�� and vary as follows
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Figure 13.
Second test case.

DRBEM results. Heat
transfer coefficient

distribution along the
billet surface
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fk�T� �

188:300000 T � 523:0 �K�
144:368000� 0:084000� T 523:0 �K� < T � 573:0 �K�
192:500000 573:0 �K� � T � 775:0 �K�
818:666000ÿ 0:807956� T 775:0 �K� < T � 911:0 �K�
52:555000� 0:033000� T T > 911:0 �K�;

8>>>>>><>>>>>>:
�52�

fcp
�T� �

748:737000� 0:0442110� T T � 775:0 �K�
1286:750000ÿ 0:2500000� T 775:0 �K� � T � 991:0 �K�
1039:000000 T > 991:0 �K�;

8><>:
�53�

The billet reaches steady-state in 252 timesteps with a maximum of nine and an
average of 3.9 internal timestep iterations. The CPU time for the test case is
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Figure 14.
Second test case.
DRBEM results. Heat
flux distribution along
the billet surface
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3,715 seconds. The number of internal timestep iterations is in the second case
only slightly different from the first case. The extremely non-uniform mesh
used in computations, the temperature dependent material properties and the
complex boundary conditions represent no convergence problems. The method
in the discussed two examples does not require any over- or under-relaxation,
despite the complete non-linear character of the posed problem.

Figure 10 presents the calculated billet temperatures at three radial locations
as a function of the axial coordinate. Figure 11 presents the calculated billet
isotherms. Figure 12 presents the cooling water temperature increase and
Figures 13 and 14 the billet heat transfer coefficient and the heat flux
respectively with clearly distinct mould, gap, and direct-chill zones.

5. Conclusions
The present paper demonstrates the successful use of the dual reciprocity
boundary element method (SÏarler, 1996) for numerical evaluation of physical
models that could be previously solved only by more established numerical
methods. It probably represents the first industrial use of the boundary element
method for solving convective-diffusive phase-change problems with
temperature dependent material properties and complex boundary conditions.
The essentially new and efficient treatment of the convection term is shown.
Scaled axisymmetric thin plate splines have been derived and numerically
implemented on a highly non-uniform mesh. The described method was
applied in a DC casting simulator of aluminium alloys at the Slovenian
company IMPOL Slovenska Bistrica where it was coupled with the process
specific mould heat transfer correlations and direct-chill boundary conditions.
Excellent agreement was found between the computational model, based on the
numerical method described in this paper, and the experimental results.
Further research will be focused on upgrades of the method to three-
dimensions, iterative solution of the relevant system of algebraic equations,
handling of matrix 	ÿ1 by iterative techniques, and coupling the treated
energy with the momentum equation as formulated in SÏarler (1997). The
inclusion of the momentum equation will allow us to model the influence of the
nozzle and distributor shapes (see Figure 1) which are not taken into account in
the present work.
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